Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140783, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043618

RESUMO

Ornidazole (ONZ), a nitroimidazole antibiotic detected in water bodies, may negatively impact the aquatic ecosystem. Its reaction kinetics during ozonation which is a feasible and applicable technology to control the contamination of emerging contaminants, however, has not been reported in literature. In this study, we measured the apparent second-order kinetic constant of ONZ with ozone molecules via the excessive ozone method and the competing method which led to an average value of 103.8 ± 2.7 M-1 s-1 at pH 7. The apparent second-order kinetic constant of ONZ with HO• was calculated to be 4.65 × 109 M-1 s-1 with the concept of Rct measured via para-chlorobenzoic acid as a probe. The transformation products (TPs) of ONZ during ozonation at pH 3 and pH 11 were separately analyzed with HPLC-MS/MS and some unique products were found at pH 11, reflecting the influence of HO•. The toxicity of individual TPs was predicted with the tool of T.E.S.T. It was found that 62% of 21 identified TPs could be more toxic than ONZ in terms of at least one acute toxicity endpoint, including chlorinated amines and N-oxides. The analysis with a respirometer further revealed that the toxicity of mixing TPs generated at HO• rich conditions was slightly lower than O3 dominated conditions. In general, this study provides the basic kinetic data for designing ozonation processes to eliminate ONZ and the important reference for understanding the toxicity evolution of ONZ during ozonation.


Assuntos
Ornidazol , Ozônio , Poluentes Químicos da Água , Purificação da Água , Oxirredução , Espectrometria de Massas em Tandem , Ecossistema , Poluentes Químicos da Água/química , Cinética , Ozônio/química , Purificação da Água/métodos
2.
Chemosphere ; 311(Pt 2): 137196, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370765

RESUMO

Ibuprofen (IBP) is a carcinogenic non-steroidal anti-inflammatory drug (NSAID). It is of certain hazard to aquatic animals and may cause potential harm to human health. As traditional methods cannot effectively remove such a pollutant, many advanced oxidation processes (AOPs) have been developed for its degradation. The electro-Fenton process has the advantages of strong oxidative ability, a synergistic effect of various degradation processes, and a wide application range. This study developed a high-performance gas diffusion electrode (GDE) for electrochemical hydrogen peroxide (H2O2) production. The optimum system performance was found at the current density of 10 mA cm-2, pH of 7.0, and air flow rate at 0.6 L min-1, where the accumulation of H2O2 could reach as high as 769.82 mg L-1. The computational fluid dynamics (CFD) simulation results revealed a fast mass-transfer property in this electro-Fenton system with U-tube GDEs, which resulted in a deep-level degradation (∼100%) of the pollutant (IBP) and a low-concentration degradation of 10 mg L-1 within a 120-min reaction period. The high-performance liquid chromatography-mass spectrometry (LC-MS) studies demonstrated that the hydroxyl radicals were the primary active species in the electro-Fenton system and that the degradation intermediates of IBP were mainly 1-(4-isobutylphenyl) ethanol and 2-hydroxy-2-(4-isobutyl phenyl) propanoic acid through four probable electro-Fenton degradation pathways. This report provides a facile and efficient way to construct a high-performance electro-Fenton reactor, which could be effectively used in advanced oxidation processes (AOPs) to remove emerging contaminants in wastewater and natural water.

3.
Water Sci Technol ; 85(12): 3357-3369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35771051

RESUMO

The cathode is the key component in the electro-peroxone process (E-Peroxone), which is popularly constructed with carbon materials. This study developed an innovative method to fabricate a cathode with waste-tire carbon (WTC) whose performance was evaluated for the degradation of tinidazole (TNZ), an antibiotic frequently detected in water. It was found that the addition of WTC in the cathode can significantly promote the yield of H2O2 and the current efficiency: around 2.7 times that of commercial carbon black at the same loading. The critical influencing factors were studied, including the current density, ozone concentration, initial pH value, chlorine ions and initial TNZ concentration. The scavenger tests demonstrated the possible involvement of •OH and O2•-. Some transformation products of TNZ were identified with UPLC-MS and the degradation pathway was proposed accordingly. These results demonstrated the potential of WTC for developing E-Peroxone cathodes.


Assuntos
Ozônio , Poluentes Químicos da Água , Carbono , Cromatografia Líquida , Eletrodos , Peróxido de Hidrogênio , Oxirredução , Espectrometria de Massas em Tandem , Tinidazol , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 29(3): 3213-3229, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734337

RESUMO

Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Purificação da Água , Bactérias , Metais
6.
J Colloid Interface Sci ; 597: 84-93, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33872889

RESUMO

Sludge derived carbon (SC) has been widely used in advanced oxidation processes as an effective and economic catalyst. In this study, we applied surface modified SC for the first time to catalyze the heterogeneous photo-Fenton process with ciprofloxacin, a highly concerned emerging contaminant, as a model substance. H2SO4 was used to acidify the SCs under varying acid dosages, temperatures, and reaction time lengths. The surface acidity of SCs was quantitatively characterized with NH3-TPD. A strong correlation between the surface acidity and the catalytic activity was clearly demonstrated. The highest catalytic activity was obtained with SC whose acidity was 0.149 mmol·g-1 after being modified with 6 mol·L-1 H2SO4 at -20 ℃ for 24 h. In addition, XRD, XRF, BET, XPS, and HRTEM were also used to characterize the obtained SC. ·OH radicals were found to be the main reactive species by EPR. Ten transformation products were identified by GC-MS, based on which three possible reaction pathways were proposed.


Assuntos
Esgotos , Poluentes Químicos da Água , Carbono , Catálise , Ciprofloxacina , Peróxido de Hidrogênio , Ferro , Oxirredução , Poluentes Químicos da Água/análise
7.
Bioresour Technol ; 328: 124826, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33631461

RESUMO

Fluoroquinolone antibiotics like ofloxacin (OFL) have been frequently detected in the aquatic environment. Recently manganese-oxidizing bacteria (MOB) have attracted research efforts on the degradation of recalcitrant pollutants with the aid of their biogenic manganese oxides (BioMnOx). Herein, the degradation of OFL with a strain of MOB (Pseudomonas sp. F2) was investigated for the first time. It was found that the bacteria can degrade up to 100% of 5 µg/L OFL. BioMnOx and Mn(III) intermediates significantly contributed to the degradation. Moreover, the degradation was clearly declined when the microbial activity was inactivated by heat or ethanol, indicating the importance of bioactivity. Possible transformation products of OFL were identified by HPLC-MS and the degradation pathway was proposed. In addition, the toxicity of OFL was reduced by 66% after the degradation.


Assuntos
Manganês , Pseudomonas , Bactérias , Compostos de Manganês , Ofloxacino , Oxirredução , Óxidos
8.
Chemosphere ; 248: 126028, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32018109

RESUMO

As increasing demand of global reuse water, microbial desalination cell (MDC) is developed as a potential desalination approach to drive ion migration and separation through biodegradation without any additional energy. A novel, efficient, stable reactor coupled stacked MDC with upflow MDC was constructed, which was named as upflow-stacked MDC (USMDC). Compared with the traditional stacked MDC and upflow MDC, the desalination and generation performance of the USMDC was evaluated. Results showed that, after 24 h, the desalination ratio of USMDC can reach 91.9% when the external resistance was 1.5 Ω, which was 1.18 and 1.48 times higher than SMDC and UMDC, respectively. The long-term performance of the desalination efficiency was tested, which was maintained at 87.2-96.0% and stable for consecutive 120 days. Then, it was also the investigated that the relationship between desalination rate and external resistance during every period. The USMDC produced a maximum power density of 32.91 W m-3. In addition, the difference of current density between USMDC and SMDC indicates the turbulence generated by cylindrical structure could effectively decrease the internal resistance. It was also corroborated that salt concentration gradient and bipolar electrodialysis would decline the charge transfer efficiency. Accordingly, USMDC was verified having the superior desalination performance thus providing the possibility for application in wastewater reuse.


Assuntos
Purificação da Água/instrumentação , Purificação da Água/métodos , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Desenho de Equipamento , Salinidade , Cloreto de Sódio , Águas Residuárias
9.
Chemosphere ; 216: 533-544, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30388689

RESUMO

In this work, a novel coupled-oxidation tubular reactor (COTR)/non-thermal dielectric barrier discharge (NTP-DBD) catalytic plasma in a synergistic electro-catalysis system was investigated for odorous mercaptans decomposition. In order to enhance the degradation efficiency of electro-oxidation, a novel enhanced Ti/PbO2 electro-catalytic tubular reactor prepared by using flow dynamic electrodeposition was designed and applied as pretreatment process for CH3SNa wastewater. The results indicated that the optimal condition was 7 mA cm-2 of current density, 10 g L-1 of initial concentration of CH3SNa, 9.0 of pH and 5.0 g L-1 of electrolyte concentration. Addition of Fe2+ and H2O2 and mechanism of COTR system were first put forward. The target species CH3SNa were removed over 90% by this process. In order to treat the CH3SH effusion which was co-produced with CH3SNa aqueous solution, the technology of NTP-DBD catalytic plasma reactor followed by a chemical absorption has been developed. MSH could be removed over 95% under the condition of 2 s of residence time, 15 kV of output voltage with oxygen concentration of 9%. Moreover, the synthetic Ni-doped AC catalyst had the best performance under 0.7 mmol g-1 of nickel loading. The conclusion was the energetic electrons generated in the DBD reactor played a key role on the removal of MSH, and the major decomposition products of MSH were detected as CH3SSCH3, SO2 and NO2. Moreover, the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.


Assuntos
Compostos de Sulfidrila/química , Catálise , Elétrons , Oxirredução
10.
J Hazard Mater ; 358: 187-197, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990806

RESUMO

In order to break the high operating cost bottleneck of electrochemical treatment of aqueous flutriafol (FTF), an emerging fungicide, a novel three-dimensional ordered macroporous PbO2 (3DOM-PbO2) filter was designed to facilitate mass transfer. The effects of operating parameters, including current density, flow rate and initial concentration on FTF electrooxidation performance were investigated using conventional flat Ti/PbO2 (F-Ti/PbO2) and 3DOM-PbO2 filters, with primary objective being the development of appropriate parameters for FTF treatment. The results indicated that the FTF removal efficiency on 3DOM-PbO2 filter was improved by 2.8 times compared to that on F-Ti/PbO2 at 5 mA cm-2, 10 ml s-1 and 100 mg L-1 FTF. The corresponding electrical energy consumption was reduced by 2.7 times, ` TOC removal and mineralization current efficiency were enhanced by 4.9 and 4.8 times, respectively. Furthermore, aromatic intermediates, nitrogenous compounds and carboxylic acids were identified as main byproducts using experimental method combined with quantum chemical calculations. Then, a possible pathway of FTF degradation on 3DOM-PbO2 was proposed. Finally, the acute toxicity results showed that toxicity of the byproducts first increases and then decreases through the proposed route. LC50,48 h value of FTF wastewater increased 35%-70% on the 3DOM-PbO2 filter, indicating a significant biodegradability enhancement.


Assuntos
Técnicas Eletroquímicas/métodos , Chumbo/química , Óxidos/química , Triazóis/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Animais , Biodegradação Ambiental , Filtração , Dose Letal Mediana , Porosidade , Titânio/química , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
11.
Chemosphere ; 185: 86-93, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688340

RESUMO

Pesticide tailwater often contains residual and toxic contaminants of triazole fungicides (TFs) due to their poor biodegradability which will do great harm to local aquatic systems. For this case, a novel electrochemical reactor (TPER) equipped a tubular porous RuO2-Sb2O5-SnO2 electrode was assembled and then employed to deeply treat pesticide tailwater. Characterizations of the electrode studied by SEM, EDS and XRD analysis indicated that it owns a porous structure and a compact and crack-free surface. Influence of the porous structure on electrochemical property was examined by cyclic voltammetry and normal pulse voltammetry. The results indicated that porous structure can not only enlarge electrochemical active area but also increase mass transfer efficiency by 5.7-fold in flow-through mode compared with batch mode. Furthermore, the optimal operating conditions of TPER were flow rate of 250 mL min-1 and current density of 4 mA cm-2. After 1.5 h treatment under these conditions, Tz, TC and PPC were removed by 98.9%, 99.0% and 98.4% respectively, while 81.9% of COD was also removed. Additionally, the microbial content was dropped to 0 CFU mL-1 and fecal coliform was lower than 2 MPN (100 mL)-1. All results demonstrated that the treated tailwater has met the Class 1 of National Discharge Standard of China. Especially, operating cost of TPER was only $ 0.33 per ton. The excellent performance together with the low cost indicated that TPER is a promising option for depth treatment of industrial tailwater.


Assuntos
Praguicidas/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , China , Redução de Custos , Eletrodos , Porosidade , Eliminação de Resíduos Líquidos/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...